
Leveraging Semantic Datalake Capabilities
Using Knowledge Graphs and Graph Technologies

Evangelos Garaganis

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS
MSC IN INFORMATION SYSTEMS DEVELOPMENT AND

SECURITY

Master Thesis

1

Cultivating towards the current semantics anode

Section I

2

Data are characterized by the following critical dimensions:

Data are contextual

Only when data are
presented within context,
does it become
meaningful.

Data are dynamic

Data are ongoing and
subject to change.

Data are diverse

Data are heterogeneous.

Data are connected

Data reside in highly
complex network of data
elements.

3

The need to sort, process, filter and analyze data against those dimensions has persistently vexed humanity
the last decades.

Data
Silos

Organizations and individual departments started by relying on data silos as their chosen method
for handling this challenge. While data silos granted organizations the capacity to conduct business
intelligence data analysis, their segregation from the rest of the organization units hindered
collaboration, data sharing and visibility across different departments, leading to duplication of
effort, inconsistencies and data quality issues.

Data Warehouse

In response to the insular characteristics of data silos and the exponential growth in data volume,
data warehouses gained prominence. These data repositories accommodated a multitude of data
sources, both internal and external, allowing users to extract data from diverse origins, convert it
into a structured format, and load it into the warehouse. This development afforded organizations
a unified, single source of truth throughout their domain, along with robust querying and data
analysis capabilities. A significant drawback associated with data warehouses was the necessity for
intricate preprocessing and the establishment of data integration or ingestion pipelines to
structure data prior to its entry into the data warehouse. This entailed complex Extract, Τransform,
Load (ETL) processes, rendering data ingestion a costly operation that demanded substantial
reworking to align with a ’meaningful’ data model.

4

Heterogeneous Data Sources Unstructured / Structured Data

Data Lake

ETL / ELT Pipelines Data Transformations

Advanced Analytics

Data Exploration

Dashboards

Machine Learning

Data Catalog

In response to data warehouses, data lakes emerged. Data lakes are centralized data repositories for storing large
and heterogeneous sets of data, that can be structured, semi-structured and unstructured. In contrast to data
warehouses, data lakes are highly accessible and quick to update.

Data are dumped into the lake unstructured and are transformed on demand for various analysis and statistics
reasons, including machine learning, predictive analytics, data discovery and profiling. They also offer means to
securely store and catalog data, while favoring data movement and data transformations.

5

While data lakes afford users the capability to efficiently import large volumes of data at a minimal cost, indiscriminately
depositing data into a data lake can render it inaccessible, cumbersome, and ultimately unproductive, leading to the
emergence of a data swamp.

Without descriptive metadata, ELT can tank data quality, as data that come into warehouses without cleansing, duplicates,
makes it hard for audit and managing authorization realms. For a data lake to operate effectively, it must ensure the
integrity of its data assurance, provenance / lineage, and governance components.

It seems that while humanity has acquired the capacity to efficiently store and effectively access and query vast
amounts of data, there remains a substantial gap in our ability to comprehensively process this data within a broader
context. 6

In order to address this limitation, there is a growing trend towards relying on a semantic layer built on top of the data
fabric within data lakes, that could enhance our comprehension of the interconnections among the data elements
within a dat alake, ultimately yielding valuable insights.

Heterogeneous Data Sources Unstructured / Structured Data

Data Lake

ETL / ELT Pipelines Data Transformations

Advanced Analytics

Data Exploration

Dashboards

Machine Learning

Data Catalog

Semantic Layer

In their paper “Enriching Data Lakes with Knowledge Graphs” [1], there is a list of semantic utilization examples
within the context of a Data Lake.

7

Using Knowledge Graphs to Manage a Data Lake et al. [4] discussed how to address data findability, accessibility,
interoperability, and reuse for data stored in a data lake. They showed the benefits provided to a data lake through the
Support of ontologies and knowledge graphs which provide cataloguing of data, tracking provenance, access control, and
semantic search. In particular, they built the DCPAC ontology (Data Catalog, Provenance, and Access Control) related to the
management of data produced by vehicles.

Applying semantics to reduce the time to analytics within complex heterogeneous infrastructures et al. [7] to reduce
the time from the collection to the analysis of data, they centralised the data in a data lake. Instead of populating the data lake
of unstructured data, they proposed a semantic data platform called ESKAPE for the semantic annotation of the ingested data.
Furthermore, a knowledge graph has been defined to act as an index that evolves over time according to the data that
are included. In this way, users can easily identify and analyse the data coming from the different places.

Personalised exploration graphs on semantic data lakes et al. [8] proposed a semantics-based approach for the personalised
exploration of data lakes within the domain of smart cities. First, they provided the data lake with a semantic model using domain
ontologies. Then, another ontology was adopted to describe indicators and analysis dimensions. Finally, personalised exploration
graphs were generated for different types of users.

8

Semantic profiling in data lake (2018) et al. [9] proposed a semantic profiling tool for metadata extension in data lake systems.
Its aim was to understand the meaning of data. Their tool recognised the meaning of data at schema and instance level using
domain vocabularies and ontologies

Strategies for a Semantified Uniform Access to Large and Heterogeneous Data Sources et al. [10] proposed a physical and a
logical data integration whose goal was to query large and heterogeneous data sources. For the physical data integration
they defined an ontology to transform the data into RDF.

Enriching Data Lakes with Knowledge Graphs et at. [1] proposed a methodology to extend a data lake containing data
extracted from touristic platforms with a semantic layer and produce a knowledge graph. They engineered an ontology in
the touristic domain integrating already existing ontologies and extending them with classes. However, the focus of this
manuscript is not on the ontology but on the extracted knowledge graph and the steps we performed to transform the
data from the data lake to the knowledge graph.

A semantic data lake model for analytic query-driven discovery et al. [6] presented a semantic model for the correct data
fruition stored into a data lake. They mapped the indicators of interest, the dimensions of analysis and formulas into a
knowledge graph to support the correct identification of data.

9

But since semantics is an overloaded term, what does the semantic layer construction actually mean ?

10

The foundations of knowledge and semantics were established between 300-400 BC by Socrates
and Plato. They introduced the initial categorization of knowledge into two distinct realms:
ideas, which are abstract, and things, which are concrete and observable. Ontologies are derived
from this fabric.

“Well, Plato, if you create an ontology and
nobody understands it, does it even exist?”

"Socrates, it exists, but it's like a
philosopher's joke without a punchline –

you know it's there, but it just leaves
everyone scratching their heads!”

11

This thesis found its articulation of semantics within the framework of a
graph, notable a knowledge graph.

Graphs represent the inherent structure within our data realms.

At a conceptual level, schemas and ontologies or other types of mappings
establish a contractual agreement between humans and machine models.
This agreement encompasses multiple relationships that encapsulate
diverse semantic constructs, including but not limited to inheritance,
taxonomies, and so forth.

Modelled entities are been instantiated in the form of objects that are
stored in volatile or non-volatile format, can also contain multiple
references that can exponentially grow in size. Data undergo continuous
modifications or conversions, transitioning from one state to another.
This transformation occurs during data integration phases within
transformation pipelines and also arises through events, resulting in the
accumulation of a historical record of alterations.

Finally, individuals engage in project-related endeavors, delivering these
projects to other stakeholders through various artifacts, fostering
communication among the involved parties.

12

Drawing from this philosophical standpoint, having a graph to counter
this entropic tendency of data to relate, transform and flow, imparts a
dynamic contextual understanding of our data, which can offer assistance
in:

• Modeling real-world information in way closer to brain’s mental
 model of the world.
• Data exploration and deep understanding of the data.
• Managing and storing heterogeneous data.
• Performing logical reasoning (algorithmic decision making, pattern
finding, etc).
• Richer data management, personalization and recommendations.
• Enable graph algorithms utilization.
• Removing redundancy, compared to e.g. tabular data.
• Furnishing expressive graph queries.
• Using automated tasks from different software.

Due to these rationales, this thesis has opted for a graph-based approach to capture the emanating semantics and
implement the semantic layer with a knowledge graph. A knowledge graph can help us surface hidden lines of
communication and identify facets or disconnected information.

13

Using knowledge graphs to implement data lake’s semantic layer

Section 2

14

In their book ”Knowledge Graphs: Data in Context for Responsive Businesses”, Jesús Barrasa, Amy Hodler & Jim
Webber shed ample light on knowledge graphs and how to implement the semantic layer with the help of knowledge
graphs.

Adding a semantic layer atop data is a process where we enrich data with semantics. This happens by applying a
set of organization principles upon data, such us dictionaries, taxonomies, logical data entity - relationships
models, ontologies.

15

In a similar manner as in the previous proposition, we can add a semantic layer atop our graphs making it a
knowledge graph. This happens by applying the aforementioned organization principles of the previous section
on our graph and transforming it to a property graph model. This means that:

1. We can store information, semantics and meta-data on
graph nodes or edges.

2. Instead of storing only the objects in graph format, we
can also introduce newly created nodes that represent
different semantics or metadata, such us the model the
each object is instance of, or other organizational tools,
such as thesaurus.

3. Convey on the same graph other organizational
possibilities, including but not limited to inheritance
properties, diverse taxonomies, custom ontologies, and
associations among objects.

There are two types of knowledge graphs proposed in the book: (a) Actioning Knowledge Graphs and (b) Decisioning
Knowledge Graphs.

16

Actioning Knowledge Graphs

1. For data integration we can relate datasets to their
originated data sources.

2. For data lineage we keep track about data’s historical
archive.

3. Semantically enrich existing data by linking them to
vocabularies, taxonomies, and ontologies to enable
interoperability.

Information and people tend to become siloed. This results into disjointed data domains that undermine the radical
visibility of organization’s data ecosystem. An Actioning knowledge graph help us understand that ecosystem, by
capturing its semantics from the production of a data point to its consumption from various endpoints and provides
the ability to invoke action. With an actioning knowledge graph we can connect data with metadata in a non-invasive
manner. This knowledge graph of metadata offer a connected view of the integrated domains by combining data
stored in a local graph with data retrieved on demand from third-party systems.

An Actioning Knowledge Graph designed for metadata management serves as a catalyst for fostering confidence in
data and facilitating self-service data utilization throughout the organization. This type of knowledge graph
constitutes the fundamental underpinning for critical data management functions such as data quality assurance, data
stewardship, and data governance. 17

Data Lineage: Traces all steps in data pipelines from data sources to data consumers to provide trust and
high-fidelity provenance information.

Data catalog: Actionable inventory of all data assets with their detailed structure.

Data Insights: Impact analysis and root cause analysis, by exploiting the transitive dependencies modeled as
relationships in the underlying graph.

Information Search: Actioning knowledge graphs are also used to enhance information search. Documents,
lessons learned, and knowledge in general can be indexed in a knowledge graph, making it possible to search for
things instead of strings.

Single view of X: Also known as X360, the actioning kg provides trusted views and a contextualized understanding
of X and consequently provides the right data and context from which to suggest actions.

More specifically, an Actioning Knowledge Graph can be used for:

18

Dataportal is a data resource search and discovery tool that democratizes data by empowering data exploration,
discovery and trust. The explosive growth in data and internal data sources (data tables, dashboards, reports etc) :

• Makes difficult to employees to navigate the data landscape.
• The absence of metadata and contextual information has eroded trust in the data, making it challenging for
employees to rely on information outside their areas of expertise.
• The fear of using outdated or erroneous data has led to the creation of redundant resources, further complicating the
data ecosystem.

This led to information and individuals to become siloed, forcing them to navigate an opaque landscape of specialized
knowledge, providing a myopic localized view of the dataspace while lacking global context.

Democratizing Data at Airbnb: Dataportal

In order to stop relying on tribal knowledge that
undermined data discovery, Airbnb created an actioning
knowledge graph with the goal to integrate the data-space
and offer a holistic and single-lens view to users, providing
them with the essential context to be data informed and
feel confident about its trustworthiness and relevance.
Employees can search schemas, data tables etc, and further
explore the surfaced metadata, in order to remove the
consolidation barriers.

19

Decisioning Knowledge Graphs

The processing of graph data commonly employs methodologies derived from graph analytics, graph machine
learning, and graph data science. These techniques excel in identifying unobvious connections by revealing patterns
within our data. Processing data based on relationships that connect it can help us answer specific questions using
existing data, discover how the connections in that data might evolve and generally help us gain insights.

The Decisioning knowledge graph is a type of knowledge graph that employees graph data science and graph machine
learning, in order to improve decisions made by human or software agents. A Decisioning knowledge graph supports:

Graph Queries: Graph queries are used for real-time
pattern matching, with the aid of a graph database
and a dedicated graph query language.

Graph algorithms: Graph algorithms excel in
detecting global patterns and trends, but the
selection and fine-tuning of these algorithms should
align with the specific questions at hand. A
decision-making knowledge
graph should support a variety of algorithms and
allow for customization to accommodate future
growth.

20

Graph Embeddings: In addition to enhancing our understanding of data, the results of graph queries and
algorithms can be leveraged to train machine learning (ML) models. Graph embeddings are algorithms that encode
the structure of a graph, encompassing its nodes and relationships, into a format that can be readily utilized by ML
processes, thus utilizing the graph’s inherent structure as a predictor.

Graph visualization: The visualization of data enables to delve deeper into connections and draw meaningful
inferences. Exploring graphs intuitively involves actions such as traversing relationships, expanding scenes,
refining perspectives, and following specific paths. An effective visual representation of a graph must possess
dynamic qualities and customization options, empowering users to engage interactively.

Boston Scientific is a global medical device company with million
patients using its products. Predicting and preventing device failures
early in the process of supply chain is crucial. In order to pinpoint the
root cause of deflects, it created a decisioning knowledge graph,
where they included parts, finished products and failures.

Using graph queries, Boston Scientific is able to quickly reveal
subcomponents, complex relationships and trace any failures to
relevant parts. The company was able to identify previously unknown
vulnerabilities by adding graph algorithms to rank parts based on
their proximity to failures and match other components based on
similarity.

Boston Scientific Decisioning KG

21

The case study on Niovity’s semantic data lake

Section 3

22

Niovity is a multi-tenant data platform that presents an extensive array of solutions, ranging from institutional
repository management to comprehensive software development services, including Backend-As-Service solutions.

Heterogeneous Data Sources

Data Lake

ETL / ELT Pipelines

Prototypes
Semantic Layer

Supported services

Data from heterogeneous sources are being modeled by custom domain ontologies / prototypes and stored centrally
within datalake in the form of virtual objects. Prototypes, which cover each project’s domain of knowledge, are defined
by a subset of different fields and facilitate inheritance or custom metadata incorporation.

The entire data management lifecycle of the datalake and Niovity’s development and operational framework, which
encompasses tasks such as record instance management, data integration, querying, data analytics, and development, is
being executed in a model-driven fashion guided by prototypes.

Virtual Objects

• Rich data model
• ACID CRUD api with batch capabilities.
• Powerful search api with expressive DSL
• Minimal vendor lock in with data export
• Code generation in Java
• ACID transactions
• Middleware and backoffice exposed
 backends
• Digital Asset Management through filestores
• Event stream
• Data vocabularies
• Data analytics and visualizations
• Data and user authentication
• JVM and JS integration
• CMS and website management

23

1. Prototype definitions model the domain of knowledge
by forming ontologies supported by a rich logical data
model.

2. Prototype definitions encapsulate various semantics,
ranging from custom metadata to taxonomies or
thesaurus definitions.

3. Throughout its data management lifecycle there are
various metadata produced and stored in various formats
and stores.

4. Cross objects relationships along with their surrounding
context or semantics are captured in the form of a
knowledge graph stored in a triple store.

Data Lake

Prototypes
Semantic Layer

Virtual Objects

Taxonomies

Logical Data Model

Dictionaries \ Thesaurus

Entity Relationship Entity

The term ”semantics” is a conceptual notion with diverse
interpretations. In the context of Niovity semantic data lake,
semantics find expression through:

Those semantics are maintained and managed by Niovity’s core
framework, DOLAR, along with its simple knowledge graph
implementation that is stored in the form of tripe store.

24

Prototype definitions

Data outlive applications: data models should be expressed
in isolation of any application and transcend the
application boundaries. For these reasons, prototypes
model the specific domain of knowledge. They form the
ontological semantic core within Niovity’s data lake.

Each prototype is defined by a subset of field definitions, it
can capture various semantics, including custom metadata
and taxonomies while also forming cross prototype
relationships.

Prototypes are the driving factor for Niovity’s development
and data management lifecycle, including generated
CRUD, Search, Data analytics, Java APIs.

25

Butterfly Objects

Butterfly objects or virtual objects are
prototypes instances. Butterfly objects are
stored in a data-store agnostic manner to
different datastores and can be encoded in
various formats, given the application
context and needs. They are characterized
by their object coordinations (store name
and id).

Data Lake

Butterfly Objects

CRUD api

Datastores

encoded
& stored

Datastore
Listener

Supports ACID transactions
and batch operations

SD
Ks

Se
ar

ch
 A

PI
Dat

a a
na

lyt
ics

Data export

Entity Relationship Entity

Pr
ot

ot
yp

es

DOLAR

DOLAR

DOLAR is a service-neutral virtual information space framework
that automates the introduction of new business-logic objects in
terms of virtual “content objects”. User-specified virtual objects
are connected to storage artifacts and help applications realize
uniform “store-to-user” information flows atop heterogeneous
sources, while offering the reverse “user-to-store” flows with
identical effectiveness and ease of use. DOLAR offers
mechanisms to gradually support new types of storage choices,
while virtual objects help business-logic essentially operate in
isolation of any low-level information space idiosyncrasies.

26

Niovity’s Search API

Niovity’s search API offers offers a uniform search service for
all applications.

Firstly, the service offers effective support for multiple, nested,
and inter-connected data models, abstracting
away the datastores indexing details (multiple indices, deeply
nested documents, cross-index document relationships).

Secondly, the service exposes a simple, yet
powerful, query DSL that hides the underlying datastores
search/scroll APIs idiosyncrasies.

The current search API supports a handful search operators,
including binary, fulltext, unary, graph and compound
operators, while also supporting various aggregation
capabilities.

The search implementation utilizes query federation
mechanisms, to query data across multiple datastores, taking
advantage of the unique features offered
by each datastore, offering cross datastores decoding and
encoding mechanisms to support uniformity.

Prototype
A

Prototype
B

Prototype
N

Data Lake

…

Primary Datastore Search Indices

Search API

Search Request Search Response

Prototypes are mapped to
search indices

CRUD Request

Datastore
Listener

27

28

29

Prototype
A

Prototype
B

Prototype
N

Data Lake Architecture

…
Butterfly Objects

object

Semantic Layer

ref

val
graph

users

Heterogeneous

Data Sources

Filestore Datastore
Listener

Search &
Analytics
Service

Middleware
Search API

CRUD API

SDKs

30

Niovity’s data lake model-driven approach counters many of
challenges imposed on data lakes. It offers rich data modeling and a
robust architecture for data integration, reuse and interoperability, in
order to favor the development of application ecosystems.

The current semantic layer, constituting of its (a) prototype modelling
capacities (b) currently implemented knowledge graph (c) custom
metadata capturing, along with the data lake’s capabilities to handle
data, agnostically to its datastores, forms a fertile groundwork for
further utilization.

This thesis delves into the practical implementation of a Decisioning
and Actioning knowledge graph atop Niovity’s current data lake, in
order to leverage its existing semantics and empower its query and
analytics engine with the aid of cutting edge graph technologies. This
could be beneficial for:

• Evolve and expand its current query and data analytics engine.
• Enable datalake with AI & ML workflows and pipelines.
• Suggest a disciplined workflow for metadata capturing, management
and utilization.

The aim of this thesis is to create a unified knowledge graph, that
would act as an integration joint and a sophisticated index, and supply
its users with powerful tools to harness its value throughout the data,
applications and operations lifecycle.

Data Lake

Prototypes

Semantic Layer

Actioning KG

Metadata capturing
used for data lineage,
integration, governance
and housekeeping.

Decisioning KG

Objects graph allowing
for data visualization,
graph querying, graph
analytics and ML / AI
workflows.

31

Building a unified knowledge graph atop Niovity’s data lake

Section 4

32

Data Lake

> 250 Prototypes

> 80.000 institutional records
and their corresponding files

 > 30.000 users

 > 1300 units

Pergamos:
Institutional Repository / Digital Library
of the University of Athens (UoA).

Data Anonymization

Sensitive-free
Prototypes

Thesis test environment

2000 undergraduate thesis,
2000 graduate thesis,
2000 thesis

1387 units

Data Export and ELT

In order to demonstrate its work, we utilized
real datasets imported from the institutional
repository of Pergamos, which serves as the
digital repository of the Kapodistrian
University of Athens.

Pergamos houses an extensive collection of
both units and gray literature items.

To exemplify the implementation of the
knowledge graph, we imported all units
stored in Pergamos, along with a subset of
gray literature items consisting of 2000
graduate theses, 2000 post-graduate theses,
and 2000 theses.

These data serve as a pertinent
use case, as they encompass diverse
relationships and inheritance structures.
Units are associated with other units, and
gray literature items are linked to specific
units, among other associations.

33

Building a decisioning knowledge graph

Graph Queries

Graph Data Science

Graph Traversal

Graph Visualization

34

Graph Operator Syntax

Graph Search Example

The graph operator starts by searching all
root and sink objects that satisfy the
”Search Input” conditions and then finding
paths that start from those roots or lead to
that sink nodes, by following the fields
specified (transitively or not).

35

36

The graph operator is evaluated from the
InGraphOperatorEvaluator. It will
start by performing a search based on the root’s
and / or sink’s search input, returning the records
that satisfy the required search criteria.

Then it will try to find paths, by following
(transitively or not) the root objects to the - if
present - matched sink nodes.

The path finding is being performed by the
MySQLObjectGraphRecorder and
it queries that graph table where the graph is
stored in MySQL.

Notably, to enable nesting or combination of the
in graph operator with operators evaluated in
another data store, such as Elastic, the search
compiler assumes responsibility for transform-
ing the in graph operator from a graph query
executed on the graph’s data store to a
search query executed on the search data store.

37

38

• Gain access to more powerful graph queries. Given that the current graph api leverages the Neo4j querying
engine, it can express complex graph queries with ease. For example, the previous query API could not find paths
starting from specific root nodes to sink nodes. Currently, it possesses the capability to traverse any field (for
instance, by offering support for the ”*” operator to traverse any reference field), while facilitating more
straightforward transitive path discovery. Certainly, besides the graph API accessible to end users, data analysts
have access to the native Neo4j environment, enabling them to employ Cypher queries according to their
preferences.

• The existing implementation of graph operator evaluators has undergone significant simplification. Formerly, it
necessitated extensive and highly complex coding for the exploration of graph nodes. Presently, these operations are
managed gracefully and have been streamlined, making code much more scalable and robust.

• The evaluation of complex queries is significantly more efficient and performs optimally. This outcome is logical,
as it aligns with the inherent capabilities of a graph database, surpassing the performance levels achievable by a
relational database.

By evaluating graph queries in Neo4j we were able to:

39

• The existing search API facilitates authorized searches that dynamically modify results in accordance with user
authorization realm capabilities. These authorized searches are presently implemented on top of Elasticsearch,
involving intricate and convoluted implementations to accommodate this functionality. Consequently, the introduction
of a graph API offers an opportunity to redesign the current search API in a more elegant manner, augmenting its
capabilities. With the graph API, the identification of authorized relationships between users and data becomes more
straightforward and natural, aligning with a more intuitive approach.

• Data and subject to continuous change. To ensure data remains current, it is imperative to update it promptly
whenever changes occur at the source of truth. Managing data currency can be a complex task, especially when dealing
with multiple data stores, as data often possess intricate relationships that require simultaneous updates. Having
efficient means to retrieve the dependency or reference graph of records can greatly expedite the process of reindexing
and updating data related to a particular object within its corresponding data stores.

• The availability of robust graph queries will also contribute significantly to the extended utilization of the
forthcoming actioning knowledge graph, as discussed in the subsequent section. Given the graph-based nature of
knowledge graphs, the presence of comprehensive graph exploration tools is deemed imperative.

Steps forward

40

Building a decisioning knowledge graph

Graph Queries

Graph Data Science

Graph Traversal

Graph Visualization

41

Graph data science can help us distill
useful information by bringing together
graph analytics, statistics, and AI and ML
techniques to improve their predictive
and prescriptive model. Graph queries
applied together with graph science tools
can provide powerful analytics tools and
set a solid foundation for machine
learning workflows.

Since our graph database of choice is Neo4j, we proceeded in the usage of Neo4j’s Graph Data Science (GDS) library
that provides efficiently implemented, parallel versions of common graph algorithms, exposed as Cypher procedures.
Neo4j’s GDS library requires a graph projection step that materializes a graph’s subgraph and then
offers:

• Centrality, Community detection
algorithms

• Graph traversal, path finding
algorithms

• ML pipeless for graph predictions
or classifications.

Graph Projection

Page Rank Algorithm

42

Materialized Graph

PageRank results

43

• Support and experiment with more graph science algorithms, integrating them in Niovity’s datalake.

• Leverage those statistics and graph algorithms through our search API. Since graph projection and graph
algorithms can be automated and be driven from the prototype definitions, we could introduce new AI operator or
statistics that could allow end users to perform graph science analytics out of the box, without having to delve into
the underlying graph data store’s internals.

• Support ML Workflows for graphs in Datalake. Neo4j GDS supports ML pipelines, including node classification
and link prediction pipelines. Also ML workflows can be improved from the usage of graph algorithms and graph
queries, allowing for continuous updates to knowledge graph that predicts missing data and relationships.

Steps forward

44

Building a decisioning knowledge graph

Graph Queries

Graph Data Science

Graph Traversal

Graph Visualization

45

Graph traversal or path finding algorithms are crucial
for organizations in order to be able to implement
custom business logic to specific graph paths.

By implementing simple consumer pattern in
application level we were able to programmatically
apply custom actions to the traversed nodes, ranging
from domain specific business logic to esoteric use
cases (for example reindex a node and its transitive
neighbors after a record update).

46

Building a decisioning knowledge graph

Graph Queries

Graph Data Science

Graph Traversal

Graph Visualization

47

Exploring graphs can be a bogging task, as they tend
to be noisy and chaotic. In order to effectively navigate
within the graph landscape, we should be equipped
with means to intuitively visualize the graph data,
especially its relationships, so that we can better
explore the connections and infer meaning. This
includes interactive tools that can naturally allows
users to walk through relationships and filter views
dynamically with low to no-code actions.

Since graph data are stored already in Neo4j, these
visualization tools are provided out of the box, allowing
for graph exploration to data, a notable enhancement in
regard to the data previously stored in tabular format.

48

While Neo4j’s graph visualization libraries hugely
benefited data exploration within datalake, we further
explored alternative visualization methods regarding
custom use cases.

Taking for example Pergamos case, gray literature
items (under-graduate, graduate thesis) are deposited to
specific academic units. Having a diagram of unit’s
hierarchies, visualizing the number of records on each
unit in an hierarchical manner, was a complex task that
wasn’t feasible without graph queries.

By employing the graph queries of the the
aforementioned subsection, we were able to calculate
transitively the number of records for each unit,
allowing us for nested visualizations.

49

The above graph query searches for gray literature items that belong transitively to a specific unit, by following any
field. That means that, unlike the previous graph implementation, for each unit we can efficiently count the
number of items that transitively belong to it. By recursively running this query for all Pergamos units, we were
able to generate the following graph visualization, generated with the help of Apache Echarts, which depicts
the number of gray literature items each unit has, in a hierarchical manner.

• Integration with other data visualization
tools such as Neo4j bloom, or other
visualization libraries.

• Experiment with other types of
visualizations (for e.g trees).

Steps forward

50

We have reached the final phase in the development of the decisioning knowledge graph. By transitioning our graph
storage to Neo4j’s graph database, we have been able to harness the engine’s capabilities in graph querying, graph
data science, and visualization. These components constitute a decisioning layer overlaying our data fabric, enabling
the inference of improved decision-making and facilitating more accessible data exploration, while also layout in
foundational groundwork for ML & AI pipelines.

Although the current state of the decisioning knowledge is in initial steps, it forms a firm base for future expansion,
as we will acknowledge on the following section. It exhibits significant potential for enrichment with related
semantics and capabilities.

For example we further experiment with the decisioning knowledge graph implementation to:

• Use the graph structure as ML predictor, that could further commoditize its tools for widespread business use.

• Utilize the current query federation architecture to query graph embeddings to the current or another data store.

Revisiting the decisioning knowledge graph implementation and further steps

51

Building an actioning knowledge graph

Model Exploration

Data Provenance and Lineage

Data Integration

Operations

52

Prototypes are the driving factor within Niovity’s
datalake. They establish the domain model of knowledge
within an organization by defining the conceptual model
and the associated ontologies for the different entities
that compose it. Prototypes drive all the aspects of
Niovity’s data lake, starting from record instantiating
and search analytics to code generation. A domain can
consist of hundreds of prototype definitions that are
constantly being changed and updated, while inheriting
or depending to prototype libraries that are kept in
different prototype libraries.

That makes the management and data model exploration
a complex task for data employees and end-users,
undermining its capabilities. For these reasons, we
started the Actioning graph creation by augmenting the
knowledge graph with metadata and semantics
regarding the prototype definitions. From inheritance to
cross-references and field definitions, we ported the
associated semantics and metadata about the prototype
definitions to Neo4j, integrating it with the existing
graph.

53

Each prototype is encoded to a node, with label
its id and node properties the field definitions.
For the ref fields we take the allowed ref types
and model it to a graph node as well, while the
ref field definition (regarding the field
definition id or other metadata) is encoded to
the graph edges. After prototype definition
insertion to Neo4j, we continue by enriching the
graph with the prototype inheritance, so that it
can capture semantics regarding the taxonomies
that abide the model definitions. Lastly, we
connect the prototype definitions with their
instances, which means the graph objects that
have already been ported, as we saw in the
previous section.

The prototype porting to Neo4j was completely
automated in a model-driven manner with the
aid of the Visitor design pattern.

Neo4j node properties

Neo4j relationship properties

54

• Gain access to the visualization tools already established from the decisioning knowledge graph implementation.
Those visualization tools can now also be utilized for the prototype exploration and model definitions, helping
organizations to deeply understanding their domain model.

• By representing the prototype definitions in the form of graph, we are now able to execute graph queries to the
model definitions itself along with the data instances. That packs invaluable potential that can make the model
exploration even more specific. Example queries that can be asked directly to the actioning knowledge graph can be
the following:

By incorporating the prototype definitions in our existing decisioning knowledge graph, we were able to
leverage its captured semantics and harness its capabilities for the following usages:

Find prototypes that contain a specific field (non-ref and ref fields)

55

Count relationships for type

Preview prototypes field definitions

Count the different field types

Show instances of a type

56

• Encoding prototype definitions in Neo4j as graph, not only enables us with graph queries and graph
visualization tools. As we saw on the decisions graphs, there are powerful graph data science algorithms that
can provide invaluable insights regarding the organization’s domain model. Centrality algorithms, such as page
rank, can rank prototypes according to the ”importance” of a prototype when it comes for e.g. to its size.
Community detection algorithms can group prototypes to cluster or communities, providing clusters of similar
prototypes. Path finding algorithms or graph traversal can help find paths or circles in prototypes definitions.
Having access to such powerful tools in regard to modeling provides indispensable insights that can lead to
better actions.

Steps forward

• Prototype definitions along the knowledge graph can solidify future ML pipelines. Structural information and
data structures don’t change as fast as records do. The means that predictive models can have longer shelf life
with less training required. The semantics regarding the taxonomies of inheritance provide contextual
information for investigations and counterfactual analysis by domain experts and can be fed to training
algorithms to produce better results in regard to records classification or prediction but also to the model
behavior itself (for e.g. we could find similar prototypes, we could classify an ontology to an existing one, we
could generate from AI prototypes based on ontologies, or even link prediction among its definitions).

57

Building an actioning knowledge graph

Model Exploration

Data Provenance and Lineage

Data Integration

Operations

58

Data are dynamic, contextual and heterogeneous. The management of its lineage and its whole data genealogy, from
the data origination to the data exhaustion, are key elements to data provenance. For a data lake to effectively and
responsibly manage the data across its various domains and industries, it is critical to provide robust data provenance
mechanisms.

Data provenance is a requisite for:

• Data quality assurance, auditing and compliance
• Auditing or troubleshooting
• Data security
• Data reproducibility
• Data collaboration and sharing
• Data trust and transparency

Data provenance, though, is an overloaded term and can mean many things. The lack of consensus on the
semantics of the provenance has as a consequence to be incomplete and futile. In order to reach the required level
of consensus, along with the potential benefits that data provenance offers, it's important to define the semantics
of provenance in a more formal manner, for example in the form of ontologies.

59

The custom ontology that we picked was taken from Ram & Liu (2009) paper, A New Perspective on Semantics of
Data Provenance. In their paper, the authors introduced a custom ontology, that captures the essential semantics
regarding the data provenance, which they call the W7 model. The W7 model is a conceptual, general and extensible
ontological model that represents data provenance as a combination of seven interconnected questions, that can
ultimately answer any question regarding its data chain. It is adopted along with Bunge (1977) ontology, in order to
define the above components and identify the relationships between them.

60

• What: Denotes an event that affected data during its
lifetime.

• When: Refers to the time at which the event occurred.

• Where: Is the location of the event.

• How: Is the action leading up to the event.

• Who: Is the agents involved in the event.

• Which: Are the programs or instruments used in the event.

• Why: The reasons for the event.

W7 model as conceptual graph

Based on the proposed ontology, we could adopt the same semantic model in our actioning knowledge graph to keep
track of the metadata regarding the data lineage and data provenance in Niovity’s data lake. Niovity’s data lake
captures semantics and offers tools that:

• Version and keep metadata about prototype changes

• For the prototype instances there under development a versioning control system, with the aim to offer traversal

queries and branching along the timeline tracking of datalake’s records.

61

The idea

By augmenting the current actioning knowledge
graph with the W7 model, we could introduce the
W7 ontology as a type of graph node that would
contain the answers to W7’s imposed questions.

That encoding process keeps track of the data
provenance metadata and semantics in
a disciplined and well-managed manner, allowing
offers means to better understand objects
lineage and schema evolution.

• Further experiment and enrich the current ontology with related semantics, for e.g. linking it with the data
integration ontology that is proposed in the following subsection in order to capture the data genealogy
starting from their data origin.

Steps forward

• Further utilize the graph data science libraries for multiple reasons, including applying centrality
algorithms to find records with long data chains, ml pipelines that could predict the next change on a record and
generally gain insights that would be invaluable Niovity’s employees or data scientists for data cleansing,
debugging and various other scopes.

62

• Gain access to the graph database’s graph queries and graph visualization.

Building an actioning knowledge graph

Model Exploration

Data Provenance and Lineage

Data Integration

Operations

63

Data integration is can resolve to complicated task, as data heterogeneity jeopardizes big data integration.
Different ELT or ETL pipelines can become quite overwhelming to manage, as multiple transformation phases
from different data sources are performed along the data movement.

This can:

• Tank data quality
• Produce pipeline debt
• Cause trouble to troubleshooting and debugging
• Undermine the rest of the data management pillars within a data lake, such as data provenance

Actioning knowledge graphs can provide a sophisticated index and integration points, so that data across silos can
be curated. By modeling the data integration components with various semantics and ontologies, we can form a
disciplined framework to manage and understand the underlying data integration.

Choosing an actioning knowledge graph to store and handle the data integration metadata is a interesting
approach, because against the dynamic nature of data fabric integration, the graph model remains
flexible over the lifetime of the data domains.

64

Data integration in Niovity’s data lake is usually
performed through ETL processes that integrate data from
heterogeneous data sources to single unified ontology,
called prototype. Niovity’s ETL processes offer various
data integration tools, including data importing tools
(excel and json), schema discovery utilities (that analyze
the data source and can produce prototype definitions)
and of course manual migration scripts.

The idea

By incorporating an ontology upon our actioning
knowledge graph we can gain access to a general-purpose,
organization-wide data access interface that offers a
connected view of the integrated domains by combining
data stored in a local graph with data retrieved on demand
from third-party systems. This could help in:
• Data integration documentation
• Assist in the pipeline debugging.
• Empower the upcoming data lineage scenarios with even
more data and context regarding the data genealogy. 65

Heterogeneous Data Sources

Data Lake

ETL / ELT Pipelines

Prototypes

Semantic Layer

Virtual Objects

65

An example data lake ontology that could capture the essential semantics of the data integration modeling could the
following:

66

• Data source: From organization’s data silos, to remote apis, data source refers to the origin or location from which
data is obtained. The metadata regarding the data source could be as simple as its name, its type, a simple description
or other custom notes that explains the data source.

• Data set: Data sets are the structured data that we collect from data sources. Data sets are being integrated into the
data lake.

• Transformation: Data sets from different data sources are being cleaned, enriched and transformed to other
formats, in order to then be integrated and unified in the data lake. It can also have a type, it can be connect with the
agent that created it etc.

The above concepts could encoded as graph nodes in the Actioning knowledge graph, while we could introduce the
following relationship types to be part of the proposed sample ontology:

• collectedFrom: This relationship type could relate the data set with the data source that was derived from.

• transformedFrom / transformedTo: The relationship connects the originated data set with transformed entity
that was transformed to.

By incorporating the above ontology to our actioning knowledge graph allows the data integration pipelines
can be traversed, we can conduct impact analysis queries for e.g. to analyse for example the disrupted
migration channels when a service is unavailable. It also standardizes the integration processes by mapping
the data assets, thus providing global visibility, making the data discoverable and accessible and thus
promoting their consumption.

67

• By enriching the actioning knowledge graph with semantics regarding the data integration process, other
important factors, such us data provenance, can also benefit. Data lineage starts from its data origin, so
integrating the data provenance model that we presented on the previous section with the data integration
semantics can bulletproof the data provenance within Niovity’s datalake.

Steps forward

• There has been ongoing academic research regarding the data integration within data lakes and data
warehouses. In their paper ”Ontology-Driven Conceptual Design of ETL Processes Using Graph
Transformations”, Skoutas et al. (2009) introduced a method for devising flows of ETL operations by
means of graph transformations. In their paper ”Modelling Data Pipelines”, Raj et al. (2020) suggests an
overview of how to design a conceptual model of data pipelines, used for automation of monitoring, fault
detection, mitigation at different steps of a data pipeline. This provides a significant opportunity for in-depth
exploration aimed at enriching the initial sample ontology with domain-specific knowledge.

68

• Gain access to the graph database’s graph queries and graph visualization.

We have reached the final phase in the development of the decisioning knowledge graph. By transitioning our graph
storage to Neo4j’s graph database, we have been able to harness the engine’s capabilities in graph querying, graph
data science, and visualization. These components constitute a decisioning layer overlaying our data fabric, enabling
the inference of improved decision-making and facilitating more accessible data exploration, while also layout in
foundational groundwork for ML & AI pipelines.

Although the current state of the decisioning knowledge is in initial steps, it forms a firm base for future expansion,
as we will acknowledge on the following section. It exhibits significant potential for enrichment with related
semantics and capabilities.

For example we further experiment with the decisioning knowledge graph implementation to:

• Use the graph structure as ML predictor, that could further commoditize its tools for widespread business use.

• Utilize the current query federation architecture to query graph embeddings to the current or another data store.

Revisiting the decisioning knowledge graph implementation and further steps

69

Building an actioning knowledge graph

Model Exploration

Data Provenance and Lineage

Data Integration

Operations

70

Actioning knowledge graphs are not only limited to those specific areas. Metadata revolve around every simple bit of
data and Actioning knowledge graphs can be utilized to capture and leverage them and increase the operational
efficiency among organizations.

Software artifacts are build and produced from various systems, are hosted to specific servers and delivered to their
clients accordingly. The successful software delivery, release and deployment entails meticulous coordination
and comprehensive documentation, in order to satisfy the quality assurance requirements for its clientele.

Having a robust framework to document and manage those processes can be of a great asset for release managers,
dev-ops engineers and generally, for all stakeholders involved in the software implementation process, including
release managers, DevOps engineers, quality assurance professionals, and others.

Niovity’s software artifacts can roughly be classified to the following categories:

• The prototype libraries, which contain the model definitions, are released and versioned
following its schema evolution.
• Middleware and Backoffice applications, which form the backbone of the backend’s architecture, are released,
deployed and delivered to clients. The middleware and the backoffice apps need to be aligned with the latest
version of the type libraries.
• Backend’s consumers, varying from front-end applications to other third-party systems (mobile / desktop apps).

71

To ensure that all artifacts meet the compatibility requirements imposed by the prototype libraries and are easily
discoverable and effectively managed, we devised a custom ontology that could drive the creation of yet another
actioning graph.

72

• Codebase: Models the various code bases that can produces artifacts.

• Artifact: Models Niovity’s software artifacts.

• Artifact Registry: Software built artifacts are being stored to dedicated repository managers, so that client
consumers can fetch from.

• Deployment Environment: From dedicated servers to cloud computing services, it represents the environment
where the artifacts are deployed to.

• Client: The clients that software artifacts are being delivered to.

73

By projecting the metadata revolving the
artifacts management and DevOps operations
to a knowledge graph, we could:

• Visualize the software delivery pipelines
• Enhance the versioning systems, provide
means for better documentation and risk man-
agement.

• Facilitate access to graph queries and
leverage GDS library tools. These tools have
the potential to model the software delivery
and continuous integration pipelines, while
providing optimization suggestions, aid in
troubleshooting, and ensure the overall
quality of the artifacts delivery procedures.

Steps forward

Revisiting the actioning knowledge graph implementation and further steps

Within this section, we have examined the potential avenues through which an actioning knowledge graph can
deliver organizational benefits, particularly within the context of a data lake. From model exploration to data
provenance and data integration, actioning knowledge graphs possess the capability to enhance the various facets
of data management processes.

Actioning graphs exhibit a high degree of adaptability, allowing them to align seamlessly with the specific
requirements of the organizations that employ them. By establishing custom semantics and ontologies, data
scientists can seamlessly integrate metadata and diverse models into a unified graph structure, thereby facilitating a
singular point of access. This integration serves to enhance organizational efficiency and efficacy. The mere
imposition of metadata and semantics onto a graph equips users with access to a suite of data visualization
processes, graph queries, and graph data science libraries, that can contribute to further operational efficiency and
effectiveness.

The proposed actioning knowledge graph is a necessary step toward unleashing value for Niovity’s data lake. There
numerous domains of interest that could be benefited for the presence of a knowledge graph.

74

75

• Prototype definitions are scoped from specific organization domains. For Niovity to scale across multiple domains
and maintain robust data management procedures, it shall afford single views of its customer’s and its respective
domains. By modeling projects, clients and their respective prototype libraries in a single graph, we could gain
access to the single view of the clientele landscape.

• By providing context about data’s surrounding information, circumstances and environment can lead to the
positive influence of data and interactions. This includes the advancement of AI pipelines within the field of
contextual AI, by empowering its adaptive learning procedures, while facilitating its explainability.

• Explore and integrate additional ontologies in either a horizontal or vertical fashion to enhance the processes of
data governance and data stewardship. Each of the aforementioned subsections constitutes a prospective area
warranting additional research and thorough investigation.

• In the following section, we examine the possibility of consolidating multiple knowledge graphs into a singular
entity, that can assist owing to their interconnectedness within the underlying semantic structure.

Steps forward

A unified knowledge graph

76

Having reached the end of this presentation, we have
explored the practical and theoretical applications of a
knowledge graph in the context of semantic data lake. By
employing the advanced graph analytics and powerful
graph engine of Neo4j, we were able empower Niovity’s
existing knowledge graph with enhanced capabilities.

77

Data Lake

Prototypes

Semantic Layer

Actioning KG
Model Exploration
Data Provenance
Data Integration
Operations
Set up a firm base for
further utilization

Decisioning KG
Graph Queries
Graph Data Science
Graph Traversal
Graph Visualization
Set up a firm base for
further utilization

The primary objective and ultimate aim of this thesis entail
the integration of the actioning and decisioning knowledge
graphs into a unified and consolidated view, with
the overarching purpose of enhancing their interoperability.
Through the representation of diverse facets of Niovity’s data
lake ecosystem within a single knowledge
graph framework that facilitates robust analytics, it is
conceivable that we may acquire deeper insights and unveil
aspects pertaining to the critical dimensions of the orga-
nization. This approach also establishes a robust contextual
environment that fosters transparency and serves as a
foundation for operational efficiency, thereby aiding in
the scalability and effective management of the data lake.

78

Prototypes

Data Lake

Conclusion

Section 5

79

Upon the conclusion of this thesis, we have delineated the capacity to leverage the semantics captured within a
semantic data lake through the utilization of a knowledge graph and graph technologies. This study has centered
on the specific use case of Niovity’s semantic data lake, elucidating its potential to catalyze substantial improve-
ments and transformations within it’s data landscape.

Given the current semantic anode and drawing from the theoretical framework outlined in the book ”Knowledge
Graphs: Data in Context for Responsive Businesses,” we have advanced the proposition of a unified knowledge
graph. This comprehensive knowledge graph holds the potential to offer further insights into Niovity’s ecosystem
while concurrently fostering operational efficiency.

This thesis serves as an initial foray into the assessment of the value inherent in knowledge graphs and their
exploitation through the utilization of graph technologies. Our presentation of various dimensions has been
deliberately horizontal in structure, affording the flexibility for future expansion and deeper exploration.
Knowledge graphs are dynamic and can grow and evolve organically, according to the organizational needs and
objectives.

The responsibility for molding and advancing knowledge graphs in line with their desired outcomes rests with the
respective organizations.

81

Given the experimental nature of this thesis, there exists substantial scope for further improvement and
implementation. This includes:

• The integration of Neo4j’s graph database has endowed us with a multitude of potential advantages, albeit not
without associated costs. To ensure the efficient assimilation of Neo4j’s graph engine, it is imperative that we
conduct comprehensive performance assessments of the existing architecture, particularly in relation to the search
API and graph creation processes.

• We may contemplate the adoption of Neo4j or an alternative graph database as our principal data store, thereby
obviating the necessity for a relational database.

• Conduct experiments involving alternative ontologies or metadata management approaches that may yield
advantages in terms of data stewardship and governance within the data lake.

Steps forward

Bibliography

82

83

ANSARI, JASIM WAHEED; NAILA KARIM; WAHEED ANSARI; OYA DENIZ BEYAN; und MICHAEL COCHEZ. 2018.
Semantic profiling in data lake.
URL https://api.semanticscholar.org/CorpusID:4875432.

BAGOZI, ADA; DEVIS BIANCHINI; VALERIA DE ANTONELLIS; MASSIMILIANO GARDA; und MICHELE MELCHIORI. 2019.
Personalised exploration graphs on semantic data lakes. On the move to meaningful internet systems:
Otm 2019 conferences, hrsg. von Herv ́e Panetto, Christophe Debruyne,
Martin Hepp, Dave Lewis, Claudio Agostino Ardagna, und Robert Meersman, 22–39. Cham: Springer International Publishing.

BUNGE, MARIO. 1977.
Treatise on basic philosophy: Ontology i: the furniture of the world,
Ausg. 3. Springer Science & Business Media.

CHESSA, ALESSANDRO; GIANNI FENU; ENRICO MOTTA; DIEGO REFORGIATO RECUPERO; FRANCESCO OSBORNE; ANGELO
SALATINO; und LUCA SECCHI.2022.
Enriching data lakes with knowledge graphs.
1st international workshop
on knowledge graph generation from text and the 1st international workshop on
modular knowledge, text2kg 2022 and mk 2022. URL https://oro.open.ac.uk/83013/.

DIAMANTINI, CLAUDIA; DOMENICO POTENA; und EMANUELE STORTI. 2022.
A semantic data lake model for analytic query-driven discovery.
The 23rd international conference on information integration and web intelligence, iiWAS2021, 183–186.
New York, NY, USA: Association for Computing Machinery. URL https://doi.org/10.1145/3487664.3487783.

DIBOWSKI, HENRIK, und STEFAN SCHMID. 2021.
Using knowledge graphs to manage a data lake.

https://api.semanticscholar.org/CorpusID:4875432
https://oro.open.ac.uk/83013/
https://doi.org/10.1145/3487664.3487783

84

JES ́US BARRASA, AMY E. HODLER, und JIM WEBBER. 2021.
Knowledge graphs data in context for responsive businesses.
United States of America.: O’Reilly Media.

MOHAMED NADJIB MAMI. 2021.
Strategies for a semantified uniform access to large and heterogeneous data sources.
Rheinische Friedrich-Wilhelms-Universit ̈at Bonn
Dissertation. URL https://hdl.handle.net/20.500.11811/8925.

POMP, ANDR ́E; ALEXANDER PAULUS; ANDREAS KIRMSE; VADIM KRAUS; und TOBIAS MEISEN. 2018.
Applying semantics to reduce the time to analytics within complex heterogeneous infrastructures.
Technologies 6. URL https://www.mdpi.com/2227-7080/6/3/86.

RAJ, AISWARYA; JAN BOSCH; HELENA HOLMSTR ̈OM OLSSON; und TIAN J. WANG. 2020.
Modelling data pipelines.
2020 46th euromicro conference on software engineering and advanced applications (seaa), 13–20.

RAM, SUDHA, und JUN LIU. 2009.
A new perspective on semantics of data provenance.
Proceedings of the first international conference on semantic web in provenance management
- volume 526, SWPM’09, 35–40. Aachen, DEU: CEUR-WS.org.

https://hdl.handle.net/20.500.11811/8925
https://www.mdpi.com/2227-7080/6/3/86

85

SKOUTAS, DIMITRIOS; ALKIS SIMITSIS; und TIMOS SELLIS. 2009.
Ontology-driven conceptual design of etl processes using graph transformations.
J. Data Semantics 13.120–146.

ZAHARIA, MATEI A.; ALI GHODSI; REYNOLD XIN; und MICHAEL ARMBRUST. 2021.
Lakehouse: A new generation of open platforms that unify data warehousing and advanced analytics.
Conference on innovative data systems research. URL https://api.semanticscholar.org/CorpusID:229576171.

https://api.semanticscholar.org/CorpusID:229576171

